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Abstract—A significant number of parallel applications are
implemented using MPI (Message Passing Interface) and several
existing approaches focus on their verification. However, these
approaches usually work with complete applications and to
fix any undesired behaviour is very time consuming as the
application is already completely implemented. To address this
problem, we present a lightweight formal approach that helps
developers to build safety MPI applications since the early
stages of their development. The proposed approach consists
of a development environment that hides formal aspects from
developers, allows the verification of properties like deadlock
freedom and generates partial skeletons of the implementation.
The proposed approach is evaluated considering its ability and
performance in detecting deadlocks.

Index Terms—Formal Methods, Parallel Applications, MPI.

INTRODUCTION

Nowadays, a very significant group of parallel programs are
implemented using MPI (Message Passing Interface) [4]. MPI
was specially designed to help in the development of efficient
and portable parallel applications and, as mentioned in [17],
has been virtually adopted in all scientific areas demanding
parallel processing.

Despite of its popularity, the development of safe applica-
tions using MPI is a complex task as they have potentially a
large number of errors related to the use of invalid arguments,
wrong use of MPI resources, and messaging deadlock [3].

A goal of MPI was to provide a standardized access to
communication hardware and MPI does not impose many
restrictions to enforce the correct behaviour. As a result even
relatively simple applications can be challenging to understand
and explore the behaviour of parallel MPI programs.

There is a considerable number of approaches to verify
MPI applications. These approaches can be organized into
three main groups: purely formal approaches [2], [7], [11],
[15], runtime based approaches [9], [13], [19] and hybrid
approaches [18], [21]. However, all these approaches typically
work when the application is already fully implemented. In
these cases, to fix any undesired behaviour is a more time-
consuming task.

In this paper, we proposed a lightweight formal strategy
that helps MPI application developers since the early stages
of the development. The proposed approach consists of a
set of steps that guides and helps the development of MPI

applications, a formal model used to specify these applications,
and the LFD-MPI tooling (Lightweight Formal Development
in MPI) that supports all steps of the proposed process. Basic
in this solution is the simplification of the MPI application
development by concentrating on the use of a subset of MPI
primitives that potentially leads to deadlock, and the fact
that application developers are kept away from manipulating
formal specifications, whilst take benefits of their use.

The unique contributions of this paper are (i) a formal
lightweight development process and a tooling for rapid
prototyping of MPI applications, (ii) the formal models for
specifying MPI applications in LOTOS, and (iii) the strategy
on working with partial MPI applications in order to avoid
the problem of state-space explosion. Minor contributions are
related to the definition of a domain-specific language (DSL)
for partially describing MPI applications and the possibility
of detecting deadlock sequences in addition to the deadlock
detection itself.

This paper is organized as follows. Section I introduces
basic concepts of MPI and the formal description technique
adopted. Next, Section II presents the proposed approach.
Section III makes an evaluation of the proposed approach
by applying it to develop traditional parallel applications.
Section IV presents existing approaches on verifying parallel
applications. Finally, Section V presents conclusions and some
future works.

I. BACKGROUND

This section introduces two basics concepts necessary to
understand the proposed approach, namely MPI and LOTOS.

A. MPI

MPI (Message Passing Interface) [4] is a standard API for
parallel programming. In MPI, all parallelism is explicit in the
sense that application developers are responsible for correctly
identifying parallelism and implementing parallel algorithms
using the communication primitives defined in the API.

MPI has been widely adopted for several reasons. Firstly,
it is the only existing message passing library considered a
standard. Secondly, it is highly portable and source codes
are migrated to different platforms with little or very small
modifications. Thirdly, as an API, vendor implementations



usually explore native hardware features to optimize per-
formance. Finally, the whole API has over 440 primitives,
which support almost any functionality required by parallel
application developers.

The main primitives specified by MPI can be divided into
three groups: environment management routines used to get
and set information about the execution environment, such
as MPI_Init and MPI_Finalize; point-to-point communication
routines used to exchange messages between two processes
and subdivided into blocking (e.g., MPI_Send and MPI_Recv)
and non-blocking (e.g., MPI_Irecv, MPI_Wait) primitives; and
collective communication routines used to collective com-
munication inside of a group, e.g., MPI_Barrier. Additional
routine groups include process group routines, communicators
routine, derived data types routines, virtual topology routines
and other miscellaneous routines.

By using these routines, a typical MPI application has the
following general and intuitive structure:

1: #include "mpi.h"
2: ...
3: // declarations and prototypes
4: ...
5: // Serial code
6: ...
7: MPI_Init(...); // begin or parallel code

8: ...
9: // Message passing calls and implementation

of the application functionality
10: ...
11: MPI_Finalize(); // end of parallel code
12: ...
13: // Serial code

B. LOTOS

A LOTOS (Language Of Temporal Ordering Specification)
[1], [12] specification describes a system through a hierarchy
of active components or processes. A process is an entity able
to realise non observable internal actions and to interact with
other processes through externally observable actions.

The unit of atomic interaction among processes is called
an event. Events correspond to a synchronous communication
that may occur among processes able to interact with one
another. Events are atomic, in the sense that they happen
instantaneously and are not time consuming. The point where
an event interaction occurs is known as a port. Such event
may or may not actually involve the exchange of values. A
non-observable action is referred to as an internal action or
internal event. A process has a finite set of ports that can be
shared.

An essential component of a specification or process defi-
nition is its behaviour expression. A behaviour expression is
built by applying an operator (e.g., parallel operator “||”) to
other behaviour expressions. A behaviour expression may also
include instantiations of other processes, whose definitions are
provided in the “where” clause following the expression [1].
Next, we present the LOTOS specification of a simple client-
server system:
1: specification ClientServer[request,reply] : noexit

2: behaviour
3: Client[request,reply] || Server[request,reply]
4: where
5: process Client[request,reply] : noexit :=
6: request; reply; Client[request, reply]
7: endproc
8: process Server[request,reply] :noexit:=
9: hide processRequest in
10: request;
11: processRequest;
12: reply;
13: Server [request, reply]
14: endproc
15: endspec

The top-level specification (3) is a parallel composition
(operator “||”) of the processes Client and Server, i.e., every
action externally observable executed by the process Client
must be synchronised to the process Server. The process
Client (5) performs two actions, namely request and reply (6),
and then reinstantiates. The action-prefix operator (’;’) defines
the temporal ordering of the actions request and reply (the
action request occurs before the action reply) in the Client.
Informally, the Server (8) receives a request (10), processes it
(11) and then sends a reply (12) to the process Client.

II. LIGHTWEIGHT FORMAL DEVELOPMENT

The proposed approach consists of (i) an MPI application
development process, (ii) a formal model to specify MPI appli-
cations in the development process, and (iii) tools to support all
phases of the proposed process. Using the tools developers first
provide an initial description of the MPI application structure,
then enrich the description with communication annotations,
whereupon it is then translated into a formal specification,
which verifies formal properties and then generates a partial
code skeleton of the application which can then to expanded
on.

The proposed approach has been developed following some
basic principles:
• Focus on development time: MPI applications are verified

at development time as it can minimize the impact
of fixing possible undesired behaviours, like deadlock,
before the application is executed;

• Formalism agnose: The proposed solution is decoupled
from a particular formal description technique, whilst it
is based on the use of process algebras;

• Focus on communication: While complete MPI appli-
cations include several imperative commands, what is
considered in the proposed approach is the set of MPI
primitives that potentially leads to deadlock; and

• Lighweight: While the formalisation is the basis for the
proposed approach, application developers are shielded
from the complexity of directly manipulating formal
specifications.

By adopting these principles, next sections present details of
the proposed development process, the formalisation strategy
and the implemented tools.

A. Development Process

The proposed process for building MPI applications consists
of four main phases as illustrated in Figure 1: Structural



Fig. 1. General overview of the development process

Design, Communication Design, Verification and Mapping.
In phase Structural Design, application developers define the
components that make up the parallel application. Next, in
phase Communication Design, application developers must
define the communication primitives used by the components
to interact with each other. In the third phase, namely Verifica-
tion, the application is verified against some desired properties,
e.g., deadlock freedom. In the case the properties are not
satisfied, it is necessary to promote changes in structural
and/or communication specifications. Finally, phase Mapping
generates an artifact that serves as an initial step for the actual
implementation.

As usual, each phase of the development process has
input and output artifacts that are generated manually or
automatically. The first artifact, namely Abstract Specification,
describes the structure of the MPI application and is defined in
a simple DSL (Domain Specification Language). This initial
specification includes the set of processes that compose the
application and serves as basis for the Concrete Specification.
The Concrete Specification is obtained by enriching the initial
specification with MPI primitives responsible for expressing
the communication between the application’s components.
Still informal, this specification includes several processes
(one for each application’s component) and an ordered set
of MPI primitives invoked by each process. The Concrete
Specification is mapped into a Formal Specification described
in LOTOS. The formal specification is checked against de-
sired behavioural properties (Formal Properties). Finally, the
Concrete Specification serves as input to the generation of the
Implementation Skeleton, which is a semi-implementation of
the MPI application.

B. Formal Specification

While the Abstract, Concrete and Implementation Skeletons
are informal representations of the MPI application, the For-
mal Specification, as the name suggests, is described in a
formal description technique. LOTOS (see Section I-B) has

been adopted to formally specify the behaviour and structure
of MPI applications. LOTOS has a good tooling support
that enables us to simulate and verify the resulting formal
specification, it has a powerful expressiveness and has been
widely adopted to specify distributed and parallel systems. In
adition to the adoption of LOTOS, only a subset of MPI prim-
itives has been considered: MPI_Send, MPI_Recv, MP_IRecv,
MPI_Wait, MPI_Barrier, MPI_Init and MPI_Finalize. It is
worth observing that the complete MPI API consists of more
than 400 operations. However, the primitives being considerd
are the ones more commonly adopted in the majority of MPI
applications.

The Formal Specification is defined as follows:
1) Definition 1 (Formal Specification).: The formal speci-

fication of an application is SF = B, where B is a LOTOS
behaviour expression defined as B = (P0|||...|||Pn)||M , where
• Pi is a process obtained by mapping a concrete process

into a LOTOS process.
• M is the LOTOS process that specifies the MPI middle-

ware behaviour.
Pi has a behaviour obtained by mapping each individual

action of the concrete process into its respective LOTOS
action:

Concrete Process LOTOS Process
Rank (id) Process Rank [g] (id): noexit :=

m1 (id,p) g!id !m1(id,p);
m2 (id,p) ⇒ g!id !m2(id,p);
... ...
mn (id,p) g!id !mn(id,p)

endproc

The LOTOS action is defined as g!id!mi(idi, p1), where g
is a LOTOS gate, id is the identification of the process that
executes the action, mi and p1 are the MPI primitive being
invoked and its parameter, respectively. By adopting Definition
1, a simple MPI application is formally defined in LOTOS as
follows:
1: Specification SendRecv [g] : noexit
2: (* types and variables definitions *)
3: behaviour
4: (Rank0 [g] (0) ||| Rank1 [g] (1))
5: ||
6: MPI_Middleware [g] (inv, nRank)
7: where
8: process Rank0 [g] (id:Nat) : noexit :=
9: g !id !MPI_Send (id, 1);
10: g !id !MPI_Recv (id, 1);
11: Rank0 [g] (id)
12: endproc
13: process Rank1 [g] (id:Nat) : noexit :=
14: g !id !MPI_Recv (id, 0);
15: g !id !MPI_Send (id, 0);
16: Rank1 [g] (id)
17: endproc
18: (* middleware specification *)
19: endspec

This application consists of two processes, namely Rank0(8)
and Rank1(13), where Rank0 and Rank1 send and receive
messages synchronously. In this example, Rank0 first sends
a message to Rank1 (9) and then becomes ready to receive
a message from Rank1 (10), whilst Rank1 first receives a
message from Rank0 (14) and then sends a message to Rank0
(15).



The MPI_Middleware (instantiated in Line 6) is respon-
sible for defining the order the MPI primitives invoked in
each process can be actually executed. In practical terms, it
coordinates the interactions between the MPI processes by
receiving an invocation and deciding what happens next in
the behaviour of the application. This ordering is defined based
on the semantics of the MPI primitives. The MPI middleware
behaviour is defined in LOTOS as follows:
1: process MPI_Middleware [g] (lInv:INVOCATION, nRank:Nat) : noexit :=
2: g ?id:Nat ?inv:INVOCATION [Enabled (inv, lInv, nRank)];
3: MPI_Middleware [g] (inv, nRank)
4: endproc

This middleware specification has a key element, function
Enabled, that decides whether an MPI primitive of a particular
process can be executed or not. This function is used in
predicate [Enabled(inv, lInv, nRank)] (Line 2) that enables
the execution of the primitive (inv) when it is evaluated to
true. In practice, this function serves as a hook to enforce the
MPI semantics, whilst it in some way overrides the semantics
of the parallel LOTOS operators (||).

In order to better illustrate the role of function Enabled, the
following traces have been generated when this function is in
action (MPI Semantics) or not in action (LOTOS Semantics)
in the previous example:

Line MPI semantics LOTOS Semantics
1 G !0 !MPI_Send(0,1) G !0 !MPI_Send(0,1)
2 G !1 !MPI_Recv(1,0) G !0 !MPI_Recv(0,1)
3 G !1 !MPI_Send(1,0) G !1 !MPI_Send(1,0)
4 G !0 !MPI_Recv(0,1) G !1 !MPI_Recv(1,0)

This LOTOS trace (second column) is not valid accord-
ing to the MPI semantics. The action in the second line
(G!0!MPI_Recv(0, 1)) should not be possible in this example
until the execution of fourth line (G!1!MPI_Recv(1, 0)).

Function Enabled defines which primitives are allowed to
be executed next by the process based on: the primitives
already invoked but that still waiting to be executed (Lists);
the MPI primitive just invoked by the process (invMPI);
the candidate MPI primitives that are enabled according to
the LOTOS semantics (invFDT); and the MPI semantics
(invMPI$Semantics(Lists, invMPI , invFDT [i])).
1: Enabled (Lists,invMPI,invFDT)
2: nProc ← number of MPI processes
3: for i ← 1 to nProc
4: rsp [i] ← invMPI$Semantics(Lists,invMPI,invFDT[i])
5: end for
6: return rsp

This function is invoked every time a MPI process interacts
with the MPI_Middleware. In its turn, the middleware main-
tains internally a set of execution lists (Lists), one for each
application process.

The semantics of the MPI primitives aforementioned are
enforced in the LOTOS specification using the functions de-
scribed in the following. All functions have a similar structure
in the sense that they first update the execution list and then
decide if the primitive enabled by the LOTOS semantics is
also enabled by the MPI semantics.

At this point, it is worth observing that the semantics of each
MPI primitive have been defined only considering a subset

of the actual primitive’s parameters. For example, primitive
MPI_Send has six parameters while we only consider two. By
abstracting some of these parameters was essential to initially
deal with the complexity of these primitives.

InitSemantics and FinalizeSemantics Due to lack of
space and their simplicity, the semantics of MPI_Init and
MPI_Finalized are not fully described here. In practice,
MPI_Init initializes all execution lists and allows the execu-
tion of the first primitives of each process, and MPI_Finalize
terminates the MPI execution environment and all invocations
performed by the application are disabled.

SendSemantics This function enforces the semantics of
MPI_Send (src, dst). When this primitive is invoked, process
src performs a synchronous send to process dst and becomes
blocked until a synchronization happens. The invoked MPI
primitive (invMPI) is initially stored in the execution list of
process src (2). Next, it is necessary to check whether a
synchronization is possible with process dst (4). This syn-
chronization is only possible, however, if process dst has some
primitive already stored in its execution list (3). The decision
of enabling or not the LOTOS primitive (invFDT) is based
on the size of the execution list of process scr (6-10). If the
list is empty (6), i.e., process src has not pending primitives
to be completed, the candidate MPI primitive initially enabled
by LOTOS semantics (semantics of parallel operator) is also
enabled by the MPI semantics (7). Otherwise, if the process
has a pending MPI primitive to be executed, it needs to wait for
its completion and the MPI primitive enabled by the LOTOS
semantics is not allowed to be executed according to MPI
semantics (9).
1: SendSemantics (Lists,invMPI,invFDT)
2: addList(Lists[invMPI→src],invMPI)
3: if not listEmpty(Lists[invMPI→dst])
4: sync ← CheckSynchronization(Lists[invMPI→src],Lists[invMPI→dst])
5: end if
6: if listEmpty(Lists[invFDT→src])
7: rsp ← true
8: else
9: rsp ← false
10: end if
11: return rsp

Before presenting the remaining semantics functions, it
is necessary to describe how function CheckSynchronization
works. This function has two input parameters (execution lists)
used to check whether the synchronization is possible or not.
Depending on this check, both execution lists lst1 and lst2
are updated.
1: CheckSynchronization (lst1,lst2)
2: head1 ← listHead(lst1)
3: head2 ← listHead(lst2)
4: sync ← false
5: ...
6: if head1 →op = MPI_RECV
7: if head2 →op = MPI_SEND
8: and (head2 →src = head1→dst or head1→dst = ANY)
9: and head2 →dst = head1→src
10: sync ← true
11: listRemove(lst1)
12: listRemove(lst2)
13: end if
14: end if



15: ...
16: return sync

In order to check the possibility of synchronization, the
head of both execution lists (2-3) are the elements to be
actually considered as they represent the primitives that were
first invoked and whose execution is not completed. For
simplicity and lack of space, only the part of the function
associated to primitive MPI_RECV is shown1. In this case,
the synchronization happens when the heads have two different
combinations of primitives (8-9): MPI_RECV (dst, src) and
MPI_SEND(src, dst), or MPI_RECV (src, ANY ) and
MPI_SEND(src, dst). In this case, both primitives are re-
moved from the execution lists indicating their synchronization
and completion (11-12).

RecvSemantics This function is associated to the semantics of
MPI_Recv(src, dst). In the invocation of this primitive, process
src performs a synchronous receive and becomes blocked
until a synchronization occurs. Similarly to MPI_Send, the
primitive is stored in the execution list of process src (3)
and the syncrhonization is checked. However, due to the
possibility of using the wildcard ANY in this primitive (4), the
syncronization checking follows two different ways. On one
hand, in the case wildcard ANY is used (4-12), all execution
lists have to be checked for the synchronization. When the
first synchronization occurs, the checking process stops. On
the other hand, the synchronization process is similar to
SendSemantics(13-16). In both cases, the decision on enabling
or not the LOTOS primitive is also based on the size of
execution lists (18-22).
1: RecvSemantics (Lists,invMPI,invFDT)
2: nProc = number of MPI processes
3: addList(Lists[invMPI→src],invMPI)
4: if invMPI→dst = ANY
5: idx ← 0
6: sync ← false
7: while idx < nProc and not sync
8: if not listEmpty(Lists[idx])
9: sync ← CheckSynchronization(Lists[invMPI→src],Lists[invMPI→idx])
10: end if
11: idx ← idx + 1
12: end while
13: else
14: if not listEmpty(Lists[invMPI→dst])
15: sync ← CheckSynchronyzation(Lists[invMPI→src],Lists[invMPI→dst])
16: end if
17: end if
18: if listEmpty(Lists[invFDT→src])
19: rsp ← true
20: else
21: rsp ← false
22: end if
23: return rsp

IrecvSemantics This function enforces the semantics of
MPI_IRecv (src, dst) and it begins a nonblocking receive from
dst. This function is very similar to RecvSemantics, but it has
a key difference in the decision of enabling or not the LOTOS
primitive (invFDT). As MPI_Irecv is not blocking, invFDT
is enabled even when the execution list of process src is not

1The implementation of all functions in Language C can be accessed at
http://gfads.cin.ufpe.br/mpi

empty (4). In practice, process src does not become blocked
after executing MPI_Irecv.
1: IrecvSemantics (Lists,invMPI,invFDT)
2: (* Similar to Lines 1-16 of Function RecvSemantics*)
3: tempHead ← listHead(Lists[invFDT→src])
4: if listEmpty(Lists[invFDT→src]) or tempHead→op = MPI_IRECV
5: rsp ← true
6: else
7: rsp ← false
8: end if
9: return rsp

BarrierSemantics This function is associated to the semantics
of primitive MPI_Barrier that blocks until all processes have
reached this routine. This function essentially checks if all
processes have invoked this routine (5-10) and, when it occurs,
the execution lists of all processes are updated (11-13). The
processes that already invoked this primitive still blocked
waiting for the others also invoke MPI_Barrier.
1: BarrierSemantics (Lists,invMPI,invFDT)
2: nProc ← number of MPI processes
3: addList(Lists[invMPI→src],invMPI)
4: allBarrier ← true
5: for idx ← 0 to nProc - 1
6: tempHead ← listHead(Lists[idx])
7: if (tempHead→op not MPI_BARRIER)
8: allBarrier ← false
9: end if
10: end for
11:
12: ifallBarrier
13: for idx ← 0 to nProc - 1
14: listRemove(Lists[idx])
15: end for
16: end if
17:
18: if listEmpty(Lists[invFDT→src])
19: rsp ← true
20: else
21: rsp ← false
22: end if
23: return rsp

WaitSemantics This function enforces the semantics of primi-
tive MPI_Wait. It waits for an MPI send or receive to complete.
MPI_Wait blocks the process if it has a MPI_Send, MPI_Recv
or MPI_Irecv pending to be executed (2-4). In this case, the
process waits for the completion of these operations.
1: WaitSemantics (Lists,invMPI,invFDT)
2: if listOperationExist(Lists[invMPI→src],MPI_SEND)
3: or listOperationExist(Lists[invMPI→src],MPI_RECV)
4: or listOperationExist(Lists[invMPI→src],MPI_IRECV)
5: listAdd(Lists[invMPI→src],invMPI)
6: end if
7: if listEmpty(Lists[invFDT→src])
8: rsp ← true
9: else
10: rsp ← false
11: end if
12: return rsp

C. Tool Support

As previously mentioned, the entire program development
process presented in Section II-A is supported by tool we
developed, which we have called LFD-MPI (Lightweight
Formal Development in MPI). LFD-MPI includes a Graphical
Editor, two notation mappers (C2F and F2I), and a Formal



Adapter. The graphical editor helps application developers in
phases Structural Design and Communication Design, whilst
the mappers generates the Formal Specification and Implemen-
tation Skeleton.

The Formal Adapter interacts with a formal existing tooling,
to verify the formal specification (phase Verification). In the
current implementation, the formal adapter interacts with the
CADP Tooling [5]. The Abstract Specification and Concrete
Specification are modelled in a simple XML-based DSL (Do-
main Specification Language), the Formal Specification is a
LOTOS document, and the Implementation Skeleton is a semi-
implementation of the MPI application written in language C.
It is worth observing that the proposed solution is decoupled
from a particular formal description technique, which means
that adapters and mappers need to be implemented to each
supported formalism. As aforementioned, current implemen-
tation have mappers and adapters with support to LOTOS.

Figure 2 shows a screenshot of the Graphical Editor. The
edition are is divided into two main parts that shows the input
and output artifacts. These artifacts were introduced in the
development process shown in Figure 1: the input artifacts
are those manually inserted by the application developers
and are related to the abstract specification (upper left) and
concrete specification (upper right). Meanwhile, the output
artifacts (bottom) are ones automatically generated by the
LFD-MPI and whose contents are the Formal Specification
and the Implementation Skeleton.

III. EVALUATION

In order to evaluate the proposed approach, we initially
developed four MPI applications whose existence of dealock is
known a priori: Recv-Recv, Send-Send, Sched-Dep, and Any.
These applications2, as proposed in [8], were developed using
the proposed tooling and then checked in order to evaluate the
ability of our solution to detect the presence of deadlock.

Approach Recv-Recv Send-Send Sched-Dep Any
Marmot and MPI-Check Yes No Run -
ISP Yes Yes Yes Yes
DAMPI Yes No Yes -
MUST Yes Yes Run -
LFD-MPI Yes Yes Yes Yes

TABLE I
DEADLOCK DETECTION BY EXISTING TOOLS (ORIGINAL TABLE SHOWN IN

[8])

Table III shows the results considering whether the approach
is able or not to detect deadlock. It is worth observing that this
is an extension of the comparison originally presented in [8]
that includes the Any application and LFD-MPI. As Any was
not present in the original table, its evaluation in some tools
is set to "-" (no evaluation performed). Similarly to ISP, it is
also possible to generate the sequence of MPI invocations that
leads to a deadlock, e.g., "first one", "shortest one" or "all".

Another aspect that has been evaluated is the performance
of the proposed solution in terms of response time to detect

2Full LOTOS specification of these applications can be found at
http://gfads.cin.ufpe.br/mpi

Fig. 3. Evaluation results

the deadlock of the aforementioned applications. The whole
solution (LFD-MPI and CADP Tooling) run on a single Mac
OS machine (Version 10.9.5), with 2.9 GHz Intel Core i7
processor and 8 GB of memory. Figure 3 shows the dead-
lock detection time for each application aforementioned. The
response time is the time spent since the invocation of the
CADP tool until the receipt of the response from it. The CADP
was configured to stop and respond to invocation as soon as
the first deadlock has been found. For each application, the
CADP tooling was invoked 100 times and the results shown
in the figure are the mean response time.

This result shows that the deadlock detection time has low
variation despite the fact that, for example, the application
Any is much more complex than Send-Recv. Furthermore,
considering that the proposed solution is used at development
time, these results make viable the execution of deadlock
checks several times while the application is being developed,
e.g., to each change in the application code, the deadlock can
be verified with a low time cost.

IV. RELATED WORK

There is a considerable number of approaches to verify
MPI applications. These approaches can be organized into
three main groups: purely formal approaches, runtime based
approaches and hybrid approaches.

In the first group, formalisms such as CSP [2], Session
types [11] and Abstract State Machines [7] are used to create
formal models of MPI applications. These models serve as
basis for the verification of properties like deadlock freedom,
type safety and communication safety.

Yet in this group, another well-know approach for verifying
MPI applications is the MPI-SPIN [14], [15]. MPI-SPIN uses
model checking techniques to verify nonblocking MPI appli-
cations. An MPI application is modelled as a set of guarded
transition systems (one for each process that composes the
application) and a global array of communication records
that models buffered messages and outstanding requests. The
semantics of the execution are defined in such way that given
a global state, either a process’s enabled transition or an
action of the infrastrcuture can be executed. This solution was
implemented as an extension to SPIN [10] and incorporated
into the SPIN specification language Promela.



Fig. 2. Screenshot of LFD-MPI

The second group essentially works by intercepting MPI
calls at runtime and detecting several kinds of errors of
MPI applications. MUST (Marmot Umpire Scalable Tool) [8],
[9] intercepts MPI calls of all processes that make up the
application and then runs a graph-based deadlock detector. The
detector determines if the MPI call can complete or must wait
for another communication call. Basically, MUST represents
the wait-for condition as a graph and uses graph analisys to
decide whether a deadlock exists at a particular step of the
application execution. Marmot [13] and Umpire [19] adopt a
verification strategy similar to MUST.

Finally, the third group combines in some way the previous
strategies. ISP (In-situ Partial Order) [6], [21] is an tool
that uses runtime model checking methods to verify MPI
applications. By using ISP, application developers directly
check the existence of deadlocks without any contact with the
formalisms behind it. In practice, ISP provides a replacement
function for every MPI primitive supported by the solution.
When a replacement function (e.g., MPI_Send) is invoked,
a scheduler is consulted and it decides whether the function
can be actually executed or not. Another tool developed in the
context of ISP efforts is DAMPI (Dynamic Analyzer MPI)
[20]. Similarly to ISP, DAMPI also intercepts MPI calls, but
it executes a distributed scheduling algorithm.

Unlike ISP, TASS (Tookit for Accurate Scientific Software)
[16] starts from a MPI program and generates an abstract
model used to symbolic execution and state space enumer-
ation. By exploring the state space, TASS is able to check
properties such as absence of deadlock, buffer overflow and
memory leaks.

The key difference of these approaches to what is being
proposed is the fact that LFD-MPI serves mainly as a tool that
helps the development of the applications instead of treating
with complete applications. This fact reduces significantly the
code to be analised by the verification tool. Additionally, by
enforcing its role in the application development, LFD-MPI is
the only that generates semi-implementations. The similarity
with purely formal and hybrid approaches is the use of formal
methods to help the verification process. However, application
developers have not contact with the formalisms.

V. CONCLUSION AND FUTURE WORK

This paper presented a solution that allows the development
of safe parallel applications using MPI. The proposed solution
consists of a development process that uses formal methods in
a lightweight and is supported by a modeling tool that avoids
the contact of application developers with the formal technique
being used in the backend. The proposed process also focuses
on only treating with the parts of the application that have
more potential to lead to deadlock, e.g., ones that use point-
to-point communication and collective routines. In practice,
instead of verifying the whole application at runtime, which
demands the treatment of the message passing invocations
and the whole application functionality, our focus is only on
specific parts of the application.

While the solution is not complete as only a subset of
MPI primitives is used and the semantics of these primitives
have been only partially defined, it advances on three key
aspects: by adopting a formal lightweight approach for rapid
prototyping MPI applications, introducing a formal model in



LOTOS to specify MPI applications and defining an strategy
for verifying MPI applications that works with partial imple-
mentation codes. Minor contributions refer to the automatic
generation of skeletons of MPI applications and the detection
of deadlock sequences in addition to deadlock detection itself.

A key next step in this research is to extend the set of MPI
primitives supported by the current solution. Simultaneously, it
is also necessary to enrich the semantics of the MPI primitives
by considering their full set of parameters. Finally, it is also
necessary to deal with scalability issues in order to allow
the development of MPI applications with thousand or even
millions of processes.
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